{ "id": "1508.07047", "version": "v1", "published": "2015-08-27T22:24:31.000Z", "updated": "2015-08-27T22:24:31.000Z", "title": "A slicing obstruction from the 10/8 theorem", "authors": [ "Andrew Donald", "Faramarz Vafaee" ], "comment": "7 pages, 5 figures", "categories": [ "math.GT" ], "abstract": "From Furuta's $\\frac{10}{8}$ theorem, we derive a smooth slicing obstruction for knots in $S^3$ using a spin $4$-manifold whose boundary is $0$-surgery on a knot. We show that this obstruction is able to detect torsion elements in the smooth concordance group and find topologically slice knots which are not smoothly slice.", "revisions": [ { "version": "v1", "updated": "2015-08-27T22:24:31.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "detect torsion elements", "smooth concordance group", "smooth slicing obstruction", "topologically slice knots" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150807047D" } } }