{ "id": "1508.06571", "version": "v1", "published": "2015-08-26T16:57:04.000Z", "updated": "2015-08-26T16:57:04.000Z", "title": "Linear response for intermittent maps with summable and nonsummable decay of correlations", "authors": [ "Alexey Korepanov" ], "categories": [ "math.DS" ], "abstract": "We consider a family of Pomeau-Manneville type interval maps $T_\\alpha$, parametrized by $\\alpha \\in (0,1)$, with the unique absolutely continuous invariant probability measures $\\nu_\\alpha$, and rate of correlations decay $n^{1-1/\\alpha}$. We show that despite the absence of a spectral gap for all $\\alpha \\in (0,1)$ and despite nonsummable correlations for $\\alpha \\geq 1/2$, the map $\\alpha \\mapsto \\int \\varphi \\, d\\nu_\\alpha$ is continuously differentiable for $\\varphi \\in L^{q}[0,1]$ for $q$ sufficiently large.", "revisions": [ { "version": "v1", "updated": "2015-08-26T16:57:04.000Z" } ], "analyses": { "keywords": [ "linear response", "intermittent maps", "nonsummable decay", "correlations", "pomeau-manneville type interval maps" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150806571K" } } }