{ "id": "1508.06441", "version": "v1", "published": "2015-08-26T10:49:48.000Z", "updated": "2015-08-26T10:49:48.000Z", "title": "Embeddings in the Fell and Wijsman topologies", "authors": [ "Lubica Hola" ], "categories": [ "math.GN" ], "abstract": "It is shown that if a $T_2$ topological space $X$ contains a closed uncountable discrete subspace, then the spaces $(\\omega_1 + 1)^{\\omega}$ and $(\\omega_1 + 1)^{\\omega_1}$ embed into $(CL(X),\\tau_F)$, the hyperspace of nonempty closed subsets of $X$ equipped with the Fell topology. If $(X,d)$ is a non-separable perfect topological space, then $(\\omega_1 + 1)^{\\omega}$ and $(\\omega_1 + 1)^{\\omega_1}$ embed into $(CL(X),\\tau_{w(d)})$, the hyperspace of nonempty closed subsets of $X$ equipped with the Wijsman topology, giving a partial answer to the Question 3.4 in [CJ].", "revisions": [ { "version": "v1", "updated": "2015-08-26T10:49:48.000Z" } ], "analyses": { "subjects": [ "54B20", "54B05" ], "keywords": [ "wijsman topology", "nonempty closed subsets", "embeddings", "fell topology", "closed uncountable discrete subspace" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150806441H" } } }