{ "id": "1508.06394", "version": "v1", "published": "2015-08-26T07:50:10.000Z", "updated": "2015-08-26T07:50:10.000Z", "title": "On some upper bounds for the zeta-function and the Dirichlet divisor problem", "authors": [ "Aleksandar Ivić" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "Let $d(n)$ be the number of divisors of $n$, let $$ \\Delta(x) := \\sum_{n\\le x}d(n) - x(\\log x + 2\\gamma -1) $$ denote the error term in the classical Dirichlet divisor problem, and let $\\zeta(s)$ denote the Riemann zeta-function. Several upper bounds for integrals of the type $$ \\int_0^T\\Delta^k(t)|\\zeta(1/2+it)|^{2m}dt \\qquad(k,m\\in\\Bbb N) $$ are given. This complements the results of the paper Ivi\\'c-Zhai [Indag. Math. 2015], where asymptotic formulas for $2\\le k \\le 8,m =1$ were established for the above integral.", "revisions": [ { "version": "v1", "updated": "2015-08-26T07:50:10.000Z" } ], "analyses": { "subjects": [ "11M06", "11N37" ], "keywords": [ "upper bounds", "classical dirichlet divisor problem", "paper ivic-zhai", "error term", "riemann zeta-function" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150806394I" } } }