{ "id": "1508.06300", "version": "v1", "published": "2015-08-25T20:37:02.000Z", "updated": "2015-08-25T20:37:02.000Z", "title": "The $L^p$ boundedness of wave operators for Schrödinger Operators with threshold singularities : Odd dimensions", "authors": [ "Michael Goldberg", "William R. Green" ], "categories": [ "math.AP" ], "abstract": "Let $H=-\\Delta+V$ be a Schr\\\"odinger operator on $L^2(\\mathbb R^n)$ with real-valued potential $V$ for $n>3$ odd, and let $H_0=-\\Delta$. If $V$ decays sufficiently, the wave operators $W_{\\pm}=s-\\lim_{t\\to \\pm\\infty} e^{itH}e^{-itH_0}$ are known to be bounded on $L^p(\\mathbb R^n)$ for all $1\\leq p\\leq \\infty$ if zero is not an eigenvalue, and on $\\frac{n} {n-2}