{ "id": "1508.05293", "version": "v1", "published": "2015-08-21T14:57:08.000Z", "updated": "2015-08-21T14:57:08.000Z", "title": "Strange Expectations", "authors": [ "Marko Thiel", "Nathan Williams" ], "comment": "31 pages, 3 figures", "categories": [ "math.CO", "math.RT" ], "abstract": "Let gcd(a,b)=1. J. Olsson and D. Stanton proved that the maximum number of boxes in a simultaneous (a,b)-core is (a^2-1)(b^2-1)/24, and that this maximum was achieved by a unique core. P. Johnson combined Ehrhart theory with the polynomial method to prove D. Armstrong's conjecture that the expected number of boxes in a simultaneous (a,b)-core is (a-1)(b-1)(a+b+1)/24. We extend P. Johnson's method to compute the variance to be ab(a-1)(b-1)(a+b)(a+b+1)/1440. By extending the definitions of \"simultaneous cores\" and \"number of boxes\" to affine Weyl groups, we give uniform generalizations of all three formulae above to simply-laced affine types. We further explain the appearance of the number 24 using the \"strange formula\" of H. Freudenthal and H. de Vries.", "revisions": [ { "version": "v1", "updated": "2015-08-21T14:57:08.000Z" } ], "analyses": { "subjects": [ "05E99" ], "keywords": [ "strange expectations", "affine weyl groups", "maximum number", "simply-laced affine types", "unique core" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150805293T" } } }