{ "id": "1508.05059", "version": "v1", "published": "2015-08-20T18:02:51.000Z", "updated": "2015-08-20T18:02:51.000Z", "title": "Non-universal families of separable Banach spaces", "authors": [ "Ondřej Kurka" ], "categories": [ "math.FA" ], "abstract": "We prove that if $ C $ is a family of separable Banach spaces which is analytic with respect to the Effros-Borel structure and none member of $ C $ is isometrically universal for all separable Banach spaces, then there exists a separable Banach space with a monotone Schauder basis which is isometrically universal for $ C $ but still not for all separable Banach spaces. We also establish an analogous result for the class of strictly convex spaces.", "revisions": [ { "version": "v1", "updated": "2015-08-20T18:02:51.000Z" } ], "analyses": { "subjects": [ "46B04", "54H05", "46B15", "46B20", "46B25" ], "keywords": [ "separable banach space", "non-universal families", "monotone schauder basis", "isometrically universal", "effros-borel structure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150805059K" } } }