{ "id": "1508.04961", "version": "v1", "published": "2015-08-20T11:38:38.000Z", "updated": "2015-08-20T11:38:38.000Z", "title": "On positive solutions of the $(p,A)$-Laplacian with a potential in Morrey space", "authors": [ "Yehuda Pinchover", "Georgios Psaradakis" ], "comment": "36 pages", "categories": [ "math.AP" ], "abstract": "We study qualitative positivity properties of quasilinear equations of the form \\[ Q'_{A,p,V}[v] := -\\mathrm{div}(|\\nabla v|_A^{p-2}A(x)\\nabla v) + V(x)|v|^{p-2}v =0 \\qquad x\\in\\Omega, \\] where $\\Omega$ is a domain in $\\mathbb{R}^n$, $1