{ "id": "1508.04488", "version": "v1", "published": "2015-08-19T00:05:33.000Z", "updated": "2015-08-19T00:05:33.000Z", "title": "Existence of solutions for a nonlocal variational problem in $\\mathbb{R}^2$ with exponential critical growth", "authors": [ "Claudianor O. Alves", "Minbo Yang" ], "categories": [ "math.AP" ], "abstract": "We study the existence of solution for the following class of nonlocal problem, $$ -\\Delta u +V(x)u =\\Big( I_\\mu\\ast F(x,u)\\Big)f(x,u) \\quad \\mbox{in} \\quad \\mathbb{R}^2, $$ where $V$ is a positive periodic potential, $I_\\mu=\\frac{1}{|x|^\\mu}$, $0<\\mu<2$ and $F(x,s)$ is the primitive function of $f(x,s)$ in the variable $s$. In this paper, by assuming that the nonlinearity $f(x,s)$ has an exponential critical growth at infinity, we prove the existence of solutions by using variational methods.", "revisions": [ { "version": "v1", "updated": "2015-08-19T00:05:33.000Z" } ], "analyses": { "keywords": [ "exponential critical growth", "nonlocal variational problem", "nonlocal problem", "positive periodic potential", "variational methods" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150804488A" } } }