{ "id": "1508.03948", "version": "v1", "published": "2015-08-17T08:32:33.000Z", "updated": "2015-08-17T08:32:33.000Z", "title": "An asymptotic expansion for the Stieltjes constants", "authors": [ "R. B. Paris" ], "comment": "8 pages, 1 figure", "categories": [ "math.CA" ], "abstract": "The Stieltjes constants $\\gamma_n$ appear in the coefficients in the Laurent expansion of the Riemann zeta function $\\zeta(s)$ about the simple pole $s=1$. We present an asymptotic expansion for $\\gamma_n$ as $n\\rightarrow \\infty$ based on the approach described by Knessel and Coffey [Math. Comput. {\\bf 80} (2011) 379--386]. A truncated form of this expansion with explicit coefficients is also given. Numerical results are presented that illustrate the accuracy achievable with our expansion.", "revisions": [ { "version": "v1", "updated": "2015-08-17T08:32:33.000Z" } ], "analyses": { "subjects": [ "30E20", "34E05", "41A60", "11M06" ], "keywords": [ "stieltjes constants", "asymptotic expansion", "riemann zeta function", "explicit coefficients", "simple pole" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150803948P" } } }