{ "id": "1508.03921", "version": "v1", "published": "2015-08-17T04:02:02.000Z", "updated": "2015-08-17T04:02:02.000Z", "title": "Non-zero-sum stopping games in continuous time", "authors": [ "Zhou Zhou" ], "categories": [ "math.OC" ], "abstract": "On a filtered probability space $(\\Omega ,\\mathcal{F}, (\\mathcal{F}_t)_{t\\in[0,\\infty]}, \\mathbb{P})$, we consider the two-player non-zero-sum stopping game $u^i := \\mathbb{E}[U^i(\\rho,\\tau)],\\ i=1,2$, where the first player choose a stopping strategy $\\rho$ to maximize $u^1$ and the second player chose a stopping strategy $\\tau$ to maximize $u^2$. Unlike the Dynkin game, here we assume that $U(s,t)$ is $\\mathcal{F}_{s\\vee t}$-measurable. Assuming the continuity of $U^i$ in $(s,t)$, we show that there exists an $\\epsilon$-Nash equilibrium for any $\\epsilon>0$.", "revisions": [ { "version": "v1", "updated": "2015-08-17T04:02:02.000Z" } ], "analyses": { "keywords": [ "continuous time", "two-player non-zero-sum stopping game", "second player chose", "first player choose", "stopping strategy" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150803921Z" } } }