{ "id": "1508.03802", "version": "v1", "published": "2015-08-16T08:44:58.000Z", "updated": "2015-08-16T08:44:58.000Z", "title": "Categorifying the tensor product of a level 1 highest weight and perfect crystal in type A", "authors": [ "Monica Vazirani" ], "comment": "29 pages; to appear in Proc. Sympos. Pure Math. as part of the Proceedings of the 2012-2014 Southeastern Lie Theory Workshops", "categories": [ "math.RT", "math.CO" ], "abstract": "We use Khovanov-Lauda-Rouquier algebras to categorify a crystal isomorphism between a highest weight crystal and the tensor product of a perfect crystal and another highest weight crystal, all in level 1 type A affine. The nodes of the perfect crystal correspond to a family of trivial modules and the nodes of the highest weight crystal correspond to simple modules, which we may also parameterize by $\\ell$-restricted partitions. In the case $\\ell$ is a prime, one can reinterpret all the results for the symmetric group in characteristic $\\ell$. The crystal operators correspond to socle of restriction and behave compatibly with the rule for tensor product of crystal graphs.", "revisions": [ { "version": "v1", "updated": "2015-08-16T08:44:58.000Z" } ], "analyses": { "subjects": [ "05E10", "20C08" ], "keywords": [ "tensor product", "highest weight crystal correspond", "crystal operators correspond", "perfect crystal correspond", "categorify" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150803802V" } } }