{ "id": "1508.03778", "version": "v1", "published": "2015-08-15T23:59:51.000Z", "updated": "2015-08-15T23:59:51.000Z", "title": "Existence of continuous functions that are one-to-one almost everywhere", "authors": [ "Alexander J. Izzo" ], "categories": [ "math.GN", "math.PR" ], "abstract": "It is shown that given a metric space $X$ and a $\\sigma$-finite positive regular Borel measure $\\mu$ on $X$, there exists a bounded continuous real-valued function on $X$ that is one-to-one on the complement of a set of $\\mu$ measure zero.", "revisions": [ { "version": "v1", "updated": "2015-08-15T23:59:51.000Z" } ], "analyses": { "subjects": [ "54C30", "26E99", "46E30", "54E40" ], "keywords": [ "continuous functions", "one-to-one", "finite positive regular borel measure", "measure zero", "metric space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150803778I" } } }