{ "id": "1508.03663", "version": "v1", "published": "2015-08-14T21:07:39.000Z", "updated": "2015-08-14T21:07:39.000Z", "title": "Planar Graphs of Girth at least Five are Square $(Δ+ 2)$-Choosable", "authors": [ "Marthe Bonamy", "Daniel W. Cranston", "Luke Postle" ], "comment": "18 pages, 7 figures", "categories": [ "math.CO" ], "abstract": "We prove a conjecture of Dvo\\v{r}\\'ak, Kr\\'al, Nejedl\\'y, and \\v{S}krekovski that planar graphs of girth at least five are square $(\\Delta+2)$-colorable for large enough $\\Delta$. In fact, we prove the stronger statement that such graphs are square $(\\Delta+2)$-choosable and even square $(\\Delta+2)$-paintable.", "revisions": [ { "version": "v1", "updated": "2015-08-14T21:07:39.000Z" } ], "analyses": { "keywords": [ "planar graphs", "stronger statement", "conjecture" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150803663B" } } }