{ "id": "1508.02033", "version": "v1", "published": "2015-08-09T14:34:34.000Z", "updated": "2015-08-09T14:34:34.000Z", "title": "Central limit theorem for generalized Weierstrass functions", "authors": [ "Amanda de Lima", "Daniel Smania" ], "categories": [ "math.DS" ], "abstract": "Let $f$ be a $C^{2+\\epsilon}$ expanding map of the circle and $v$ be a $C^{1+\\epsilon}$ real function of the circle. Consider the twisted cohomological equation $v(x) = \\alpha (f(x)) - Df(x) \\alpha (x)$ which has a unique bounded solution $\\alpha$. We prove that $\\alpha$ is either $C^{1+\\epsilon}$ or nowhere differentiable, and if $\\alpha$ is nowhere differentiable then the Newton quotients of $\\alpha$, after an appropriated normalization, converges in distribution to the normal distribution, with respect to the unique absolutely continuous invariant probability of $f$.", "revisions": [ { "version": "v1", "updated": "2015-08-09T14:34:34.000Z" } ], "analyses": { "subjects": [ "37C30", "37C40", "37D50", "37E05", "37A05" ], "keywords": [ "central limit theorem", "generalized weierstrass functions", "unique absolutely continuous invariant probability", "real function", "unique bounded solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150802033D" } } }