{ "id": "1508.01845", "version": "v1", "published": "2015-08-08T01:16:15.000Z", "updated": "2015-08-08T01:16:15.000Z", "title": "Poisson Boundaries of Lamplighter Groups: Proof of the Kaimanovich-Vershik Conjecture", "authors": [ "Russell Lyons", "Yuval Peres" ], "comment": "20 pages", "categories": [ "math.PR" ], "abstract": "We answer positively a question of Kaimanovich and Vershik from 1979, showing that the final configuration of lamps for simple random walk on the lamplighter group over ${\\Bbb Z}^d$ ($d \\ge 3$) is the Poisson boundary. For $d \\ge 5$, this had been shown earlier by Erschler (2011). We extend this to walks of more general types on more general groups.", "revisions": [ { "version": "v1", "updated": "2015-08-08T01:16:15.000Z" } ], "analyses": { "subjects": [ "20F69", "60B15", "60J50", "43A05", "20F65" ], "keywords": [ "lamplighter group", "poisson boundary", "kaimanovich-vershik conjecture", "simple random walk", "final configuration" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150801845L" } } }