{ "id": "1508.01400", "version": "v1", "published": "2015-08-06T13:48:58.000Z", "updated": "2015-08-06T13:48:58.000Z", "title": "A density problem for Sobolev spaces on planar domains", "authors": [ "Pekka Koskela", "Yi Ru-Ya Zhang" ], "comment": "12 pages with 1 figure", "categories": [ "math.CA", "math.AP", "math.CV", "math.FA" ], "abstract": "We prove that for a bounded simply connected domain $\\Omega\\subset \\mathbb R^2$, the Sobolev space $W^{1,\\,\\infty}(\\Omega)$ is dense in $W^{1,\\,p}(\\Omega)$ for any $1\\le p<\\infty$. Moreover, we show that if $\\Omega$ is Jordan, then $C^{\\infty}(\\mathbb R^2)$ is dense in $W^{1,\\,p}(\\Omega)$ for $1\\le p<\\infty$.", "revisions": [ { "version": "v1", "updated": "2015-08-06T13:48:58.000Z" } ], "analyses": { "subjects": [ "46E35" ], "keywords": [ "sobolev space", "planar domains", "density problem" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }