{ "id": "1508.00464", "version": "v1", "published": "2015-07-30T09:52:57.000Z", "updated": "2015-07-30T09:52:57.000Z", "title": "Approximation of symmetrizations by Markov processes", "authors": [ "Justin Dekeyser", "Jean Van Schaftingen" ], "categories": [ "math.PR", "math.FA", "math.MG" ], "abstract": "Under continuity and recurrence assumptions, we prove that the iteration of successive partial symmetrizations that form a time-homogeneous Markov process, converges to a symmetrization. We cover several settings, including the approximation of the spherical nonincreasing rearrangement by Steiner symmetrizations, polarizations and cap symmetrizations. A key tool in our analysis is a quantitative measure of the asymmetry.", "revisions": [ { "version": "v1", "updated": "2015-07-30T09:52:57.000Z" } ], "analyses": { "subjects": [ "60D05", "47H20", "47H40", "60J05" ], "keywords": [ "approximation", "recurrence assumptions", "time-homogeneous markov process", "successive partial symmetrizations", "steiner symmetrizations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150800464D" } } }