{ "id": "1508.00287", "version": "v1", "published": "2015-08-02T21:05:45.000Z", "updated": "2015-08-02T21:05:45.000Z", "title": "Bounding the least prime ideal in the Chebotarev Density Theorem", "authors": [ "Asif Zaman" ], "comment": "21 pages", "categories": [ "math.NT" ], "abstract": "Let $L$ be a finite Galois extension of the number field $K$. We unconditionally bound the least prime ideal of $K$ occurring in the Chebotarev Density Theorem as a power of the discriminant of $L$ with an explicit exponent. We also establish a quantitative Deuring-Heilbronn phenomenon for the Dedekind zeta function.", "revisions": [ { "version": "v1", "updated": "2015-08-02T21:05:45.000Z" } ], "analyses": { "keywords": [ "chebotarev density theorem", "prime ideal", "finite galois extension", "dedekind zeta function", "explicit exponent" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150800287Z" } } }