{ "id": "1507.08760", "version": "v1", "published": "2015-07-31T05:58:25.000Z", "updated": "2015-07-31T05:58:25.000Z", "title": "Iitaka's $C_{n,m}$ conjecture for 3-folds over finite fields", "authors": [ "Caucher Birkar", "Yifei Chen", "Lei Zhang" ], "comment": "24 pages", "categories": [ "math.AG" ], "abstract": "We prove Iitaka's $C_{n,m}$ conjecture for $3$-folds over the algebraic closure of finite fields. Along the way we prove some results on the birational geometry of log surfaces over nonclosed fields and apply these to existence of relative good minimal models of $3$-folds.", "revisions": [ { "version": "v1", "updated": "2015-07-31T05:58:25.000Z" } ], "analyses": { "keywords": [ "finite fields", "conjecture", "algebraic closure", "birational geometry", "log surfaces" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150708760B" } } }