{ "id": "1507.08466", "version": "v1", "published": "2015-07-30T11:55:09.000Z", "updated": "2015-07-30T11:55:09.000Z", "title": "Image sets of fractional Brownian sheets", "authors": [ "Paul Balança" ], "comment": "14 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "Let $B^H = \\{ B^H(t), t\\in\\mathbb{R}^N \\}$ be an $(N,d)$-fractional Brownian sheet with Hurst index $H=(H_1,\\dotsc,H_N)\\in (0,1)^N$. The main objective of the present paper is to study the Hausdorff dimension of the image sets $B^H(F+t)$, $F\\subset\\mathbb{R}^N$ and $t\\in\\mathbb{R}^N$, in the dimension case $d<\\tfrac{1}{H_1}+\\cdots+\\tfrac{1}{H_N}$. Following the seminal work of Kaufman (1989), we establish uniform dimensional properties on $B^H$, answering questions raised by Khoshnevisan et al (2006) and Wu and Xiao (2009). For the purpose of this work, we introduce a refinement of the sectorial local-nondeterminism property which can be of independent interest to the study of other fine properties of fractional Brownian sheets.", "revisions": [ { "version": "v1", "updated": "2015-07-30T11:55:09.000Z" } ], "analyses": { "keywords": [ "fractional brownian sheet", "image sets", "sectorial local-nondeterminism property", "establish uniform dimensional properties", "independent interest" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }