{ "id": "1507.08114", "version": "v1", "published": "2015-07-29T12:28:52.000Z", "updated": "2015-07-29T12:28:52.000Z", "title": "On the consequences of a Mihlin-Hörmander functional calculus: maximal and square function estimates", "authors": [ "Błażej Wróbel" ], "categories": [ "math.FA" ], "abstract": "We prove that the existence of a Mihlin-H\\\"ormander functional calculus for an operator $L$ implies the boundedness on $L^p$ of both the maximal operators and the continuous square functions build on spectral multipliers of $L.$ The considered multiplier functions are finitely smooth and satisfy an integral condition at infinity. In particular multipliers of compact support are admitted.", "revisions": [ { "version": "v1", "updated": "2015-07-29T12:28:52.000Z" } ], "analyses": { "subjects": [ "47A60", "42B25", "42B15" ], "keywords": [ "square function estimates", "mihlin-hörmander functional calculus", "consequences", "continuous square functions build", "spectral multipliers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150708114W" } } }