{ "id": "1507.07416", "version": "v1", "published": "2015-07-27T14:38:58.000Z", "updated": "2015-07-27T14:38:58.000Z", "title": "On the Genericity of Eisenstein Series and Their Residues for Covers of $GL_m$", "authors": [ "Solomon Friedberg", "David Ginzburg" ], "comment": "10 pages", "categories": [ "math.NT", "math.RT" ], "abstract": "Let $\\tau_1^{(r)}$, $\\tau_2^{(r)}$ be two genuine cuspidal automorphic representations on $r$-fold covers of the adelic points of the general linear groups $GL_{n_1}$, $GL_{n_2}$, resp., and let $E(g,s)$ be the associated Eisenstein series on an $r$-fold cover of $GL_{n_1+n_2}$. Then the value or residue at any point $s=s_0$ of $E(g,s)$ is an automorphic form, and generates an automorphic representation. In this note we show that if $n_1\\neq n_2$ these automorphic representations (when not identically zero) are generic, while if $n_1=n_2:=n$ they are generic except for residues at $s=\\frac{n\\pm1}{2n}$.", "revisions": [ { "version": "v1", "updated": "2015-07-27T14:38:58.000Z" } ], "analyses": { "subjects": [ "11F30", "11F27", "11F55", "11F70", "17B08" ], "keywords": [ "genericity", "genuine cuspidal automorphic representations", "fold cover", "general linear groups", "adelic points" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }