{ "id": "1507.06790", "version": "v1", "published": "2015-07-24T09:30:09.000Z", "updated": "2015-07-24T09:30:09.000Z", "title": "The strong renewal theorem with infinite mean via local large deviations", "authors": [ "R. A. Doney" ], "comment": "21 pages", "categories": [ "math.PR" ], "abstract": "A necessary and sufficient condition is established for an asymptotically stable random walk to satisfy the strong renewal theorem. This result is valid for all alpha in (0, 1), thus completing a result for alpha in (1/2, 1) which was proved in the 1963 paper of Garsia and Lamperti [6].", "revisions": [ { "version": "v1", "updated": "2015-07-24T09:30:09.000Z" } ], "analyses": { "subjects": [ "60K05", "60F10" ], "keywords": [ "strong renewal theorem", "local large deviations", "infinite mean", "sufficient condition", "asymptotically stable random walk" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150706790D" } } }