{ "id": "1507.06724", "version": "v1", "published": "2015-07-24T02:07:31.000Z", "updated": "2015-07-24T02:07:31.000Z", "title": "On p-parts of character degrees and conjugacy class sizes of finite groups", "authors": [ "Yong Yang", "Guohua Qian" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1501.03237", "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite group and $Irr(G)$ the set of irreducible complex characters of $G$. Let $e_p(G)$ be the largest integer such that $p^{e_p(G)}$ divides $\\chi(1)$ for some $\\chi \\in Irr(G)$. We show that $|G:\\mathbf{F}(G)|_p \\leq p^{k e_p(G)}$ for a constant $k$. This settles a conjecture of A. Moret\\'o. We also study the related problems of the $p$-parts of conjugacy class sizes of finite groups.", "revisions": [ { "version": "v1", "updated": "2015-07-24T02:07:31.000Z" } ], "analyses": { "subjects": [ "20C20", "20C15", "20D10" ], "keywords": [ "conjugacy class sizes", "finite group", "character degrees", "largest integer", "irreducible complex characters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150706724Y" } } }