{ "id": "1507.06450", "version": "v1", "published": "2015-07-23T11:25:53.000Z", "updated": "2015-07-23T11:25:53.000Z", "title": "An Erdős-Ko-Rado theorem for finite 2-transitive groups", "authors": [ "Karen Meagher", "Pablo Spiga", "Pham Huu Tiep" ], "categories": [ "math.CO", "math.GR" ], "abstract": "We prove an analogue of the classical Erd\\H{o}s-Ko-Rado theorem for intersecting sets of permutations in finite 2-transitive groups. Given a finite group G acting faithfully and 2-transitively on the set X, we show that an intersecting set of maximal size in G has cardinality |G|/|X|. This generalises and gives a unifying proof of some similar recent results in the literature.", "revisions": [ { "version": "v1", "updated": "2015-07-23T11:25:53.000Z" } ], "analyses": { "keywords": [ "erdős-ko-rado theorem", "intersecting set", "finite group", "literature" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150706450M" } } }