{ "id": "1507.06298", "version": "v1", "published": "2015-07-22T19:55:51.000Z", "updated": "2015-07-22T19:55:51.000Z", "title": "A general approach to Heisenberg categorification via wreath product algebras", "authors": [ "Daniele Rosso", "Alistair Savage" ], "comment": "46 pages", "categories": [ "math.RT", "math.QA", "math.RA" ], "abstract": "We associate a monoidal category $\\mathcal{H}_B$, defined in terms of planar diagrams, to any graded Frobenius superalgebra $B$. This category acts naturally on modules over the wreath product algebras associated to $B$. To $B$ we also associate a (quantum) lattice Heisenberg algebra $\\mathfrak{h}_B$. We show that, provided $B$ is not concentrated in degree zero, the Grothendieck group of $\\mathcal{H}_B$ is isomorphic, as an algebra, to $\\mathfrak{h}_B$. For specific choices of Frobenius algebra $B$, we recover existing results, including those of Khovanov and Cautis--Licata. We also prove that certain morphism spaces in the category $\\mathcal{H}_B$ contain generalizations of the degenerate affine Hecke algebra. Specializing $B$, this proves an open conjecture of Cautis--Licata.", "revisions": [ { "version": "v1", "updated": "2015-07-22T19:55:51.000Z" } ], "analyses": { "subjects": [ "18D10", "17B10", "17B65", "19A22" ], "keywords": [ "wreath product algebras", "heisenberg categorification", "general approach", "degenerate affine hecke algebra", "lattice heisenberg algebra" ], "note": { "typesetting": "TeX", "pages": 46, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150706298R" } } }