{ "id": "1507.06277", "version": "v1", "published": "2015-07-22T18:07:12.000Z", "updated": "2015-07-22T18:07:12.000Z", "title": "Hasse principles for multinorm equations", "authors": [ "Eva Bayer-Fluckiger", "Ting-Yu Lee", "Raman Parimala" ], "categories": [ "math.NT", "math.AG" ], "abstract": "Let $k$ be a global field and let $L_0$,...,$L_m$ be finite separable field extensions of $k$. In this paper, we are interested in the Hasse principle for the multinorm equation $\\underset{i=0}{\\overset{m}{\\prod}}N_{L_i/k}(t_i)=c$. Under the assumption that $L_0$ is a cyclic extension, we give an explicit description of the Brauer-Manin obstruction to the Hasse principle. We also give a complete criterion for the Hasse principle for multinorm equations to hold when $L_0$ is a meta-cyclic extension.", "revisions": [ { "version": "v1", "updated": "2015-07-22T18:07:12.000Z" } ], "analyses": { "keywords": [ "hasse principle", "multinorm equation", "finite separable field extensions", "explicit description", "complete criterion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150706277B" } } }