{ "id": "1507.04994", "version": "v1", "published": "2015-07-17T15:13:17.000Z", "updated": "2015-07-17T15:13:17.000Z", "title": "Roots of random polynomials with arbitrary coefficients", "authors": [ "Yen Do", "Oanh Nguyen", "Van Vu" ], "comment": "76 pages", "categories": [ "math.PR" ], "abstract": "In this paper, we prove optimal local universality for roots of random polynomials with arbitrary coefficients of polynomial growth. As an application, we derive, for the first time, sharp estimates for the number of real roots of these polynomials, even when the coefficients are not explicit. Our results also hold for series; in particular, we prove local universality for random hyperbolic series.", "revisions": [ { "version": "v1", "updated": "2015-07-17T15:13:17.000Z" } ], "analyses": { "keywords": [ "random polynomials", "arbitrary coefficients", "random hyperbolic series", "optimal local universality", "polynomial growth" ], "note": { "typesetting": "TeX", "pages": 76, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150704994D" } } }