{ "id": "1507.04786", "version": "v1", "published": "2015-07-16T22:32:56.000Z", "updated": "2015-07-16T22:32:56.000Z", "title": "Equilibrium Fluctuations for a Discrete Atlas Model", "authors": [ "F. Hernández", "M. Jara", "Fabio J. Valentim" ], "comment": "17 pages", "categories": [ "math.PR", "cond-mat.stat-mech" ], "abstract": "We consider a discrete version of the Atlas model, which corresponds to a sequence of zero-range processes on a semi-infinite line, with a source at the origin and a diverging density of particles. We show that the equilibrium fluctuations of this model are governed by a stochastic heat equation with Neumann boundary conditions. As a consequence, we show that the current of particles at the origin converges to a fractional Brownian motion of Hurst exponent H=1/4.", "revisions": [ { "version": "v1", "updated": "2015-07-16T22:32:56.000Z" } ], "analyses": { "subjects": [ "60K35", "60H15", "82C22" ], "keywords": [ "discrete atlas model", "equilibrium fluctuations", "stochastic heat equation", "neumann boundary conditions", "fractional brownian motion" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150704786H" } } }