{ "id": "1507.04315", "version": "v1", "published": "2015-07-15T18:22:47.000Z", "updated": "2015-07-15T18:22:47.000Z", "title": "Quantization of spectral curves and DQ-modules", "authors": [ "Francois Petit" ], "comment": "31 pages", "categories": [ "math.AG", "math-ph", "math.MP", "math.QA" ], "abstract": "Given an holomorphic Higgs bundle on a compact Riemann surface of genus greater than one, we construct a DQ-module supported by the spectral curve associated to this bundle. Then, we relate quantum curves arising in various situations (quantization of spectral curves of Higgs Bundles, quantization of the $A$-polynomial...) and DQ-modules and show that DQ-modules provide a suitable framework to study the quantization of spectral curves.", "revisions": [ { "version": "v1", "updated": "2015-07-15T18:22:47.000Z" } ], "analyses": { "keywords": [ "spectral curve", "quantization", "holomorphic higgs bundle", "compact riemann surface", "relate quantum curves arising" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150704315P", "inspire": 1382992 } } }