{ "id": "1507.03731", "version": "v1", "published": "2015-07-14T06:27:16.000Z", "updated": "2015-07-14T06:27:16.000Z", "title": "A numerical method for Mean Field Games on networks", "authors": [ "Simone Cacace", "Fabio Camilli", "Claudio Marchi" ], "categories": [ "math.NA", "math.OC" ], "abstract": "We propose a numerical method for stationary Mean Field Games defined on a network. In this framework a correct approximation of the transition conditions at the vertices plays a crucial role. We prove existence, uniqueness and convergence of the scheme and we also propose a least squares method for the solution of the discrete system. Numerical experiments are carried out.", "revisions": [ { "version": "v1", "updated": "2015-07-14T06:27:16.000Z" } ], "analyses": { "subjects": [ "91A15", "35R02", "35B30", "49N70", "65M06" ], "keywords": [ "numerical method", "stationary mean field games", "discrete system", "squares method", "crucial role" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150703731C" } } }