{ "id": "1507.03726", "version": "v1", "published": "2015-07-14T05:55:52.000Z", "updated": "2015-07-14T05:55:52.000Z", "title": "On the norm of the centralizers of a group", "authors": [ "Mohammad Zarrin" ], "comment": "group theory", "categories": [ "math.GR" ], "abstract": "For any group G, let C(G) denote the intersection of the normal- izers of centralizers of all elements of G. Set C0 = 1. De?ne Ci+1(G)=Ci(G) = C(G=Ci(G)) for i ? 0. By C1(G) denote the terminal term of the ascending series. In this paper, we show that a ?nitely generated group G is nilpotent if and only if G = Cn(G) for some positive integer n.", "revisions": [ { "version": "v1", "updated": "2015-07-14T05:55:52.000Z" } ], "analyses": { "keywords": [ "centralizers", "set c0", "terminal term", "intersection", "ascending series" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150703726Z" } } }