{ "id": "1507.03548", "version": "v1", "published": "2015-07-13T18:50:09.000Z", "updated": "2015-07-13T18:50:09.000Z", "title": "Renormalization and Hopf Algebraic Structure of the 5-Dimensional Quartic Tensor Field Theory", "authors": [ "Remi Cocou Avohou", "Vincent Rivasseau", "Adrian Tanasa" ], "comment": "17 pages, 5 figures, 1 table", "categories": [ "math-ph", "hep-th", "math.CO", "math.MP" ], "abstract": "This paper is devoted to the study of renormalization of the quartic melonic tensor model in dimension (=rank) five. We review the perturbative renormalization and the computation of the one loop beta function, confirming the asymptotic freedom of the model. We then define the Connes-Kreimer-like Hopf algebra describing the combinatorics of the renormalization of this model and we analyze in detail, at one- and two-loop levels, the Hochschild cohomology allowing to write the combinatorial Dyson-Schwinger equations. Feynman tensor graph Hopf subalgebras are also exhibited.", "revisions": [ { "version": "v1", "updated": "2015-07-13T18:50:09.000Z" } ], "analyses": { "subjects": [ "05C10", "57M15" ], "keywords": [ "quartic tensor field theory", "hopf algebraic structure", "renormalization", "feynman tensor graph hopf subalgebras", "quartic melonic tensor model" ], "publication": { "doi": "10.1088/1751-8113/48/48/485204" }, "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150703548C", "inspire": 1382646 } } }