{ "id": "1507.03317", "version": "v1", "published": "2015-07-13T03:22:02.000Z", "updated": "2015-07-13T03:22:02.000Z", "title": "The spectrum of the growth rate of the tunnel number is infinite", "authors": [ "Kenneth L. Baker", "Tsuyoshi Kobayashi", "Yo'av Rieck" ], "categories": [ "math.GT" ], "abstract": "In a previous paper Kobayashi and Rieck defined the growth rate of the tunnel number of a knot $K$, a knot invariant that measures the asymptotic behavior of the tunnel number under iterated connected sum of $K$. We denote the growth rate by $\\mbox{gr}_t(K)$. In this paper we construct, for any $\\epsilon > 0$, a hyperbolic knots $K \\subset S^{3}$ for which $1 - \\epsilon < \\mbox{gr}_t(K) < 1$. This is the first proof that the spectrum of the growth rate of the tunnel number is infinite.", "revisions": [ { "version": "v1", "updated": "2015-07-13T03:22:02.000Z" } ], "analyses": { "subjects": [ "57M99", "57M25" ], "keywords": [ "tunnel number", "growth rate", "first proof", "knot invariant", "paper kobayashi" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150703317B" } } }