{ "id": "1507.03099", "version": "v1", "published": "2015-07-11T11:45:54.000Z", "updated": "2015-07-11T11:45:54.000Z", "title": "Explicit Formulas for Partition Pairs and Triples with 3-Cores", "authors": [ "Liuquan Wang" ], "comment": "11 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $A_{3}(n)$ (resp. ${{B}_{3}}(n)$) denote the number of partition pairs (resp. triples) of $n$ where each partition is 3-core. By applying Ramanujan's ${}_{1}\\psi_{1}$ formula and Bailey's ${}_{6}\\psi_{6}$ formula, we find the explicit formulas for $A_{3}(n)$ and $B_{3}(n)$. Using these formulas, we confirm a conjecture of Xia and establish many arithmetic identities satisfied by $A_{3}(n)$ and $B_{3}(n)$.", "revisions": [ { "version": "v1", "updated": "2015-07-11T11:45:54.000Z" } ], "analyses": { "subjects": [ "11P83", "05A17" ], "keywords": [ "partition pairs", "explicit formulas", "arithmetic identities", "conjecture" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150703099W" } } }