{ "id": "1507.02846", "version": "v1", "published": "2015-07-10T11:00:18.000Z", "updated": "2015-07-10T11:00:18.000Z", "title": "Tail probabilities of St. Petersburg sums, trimmed sums, and their limit", "authors": [ "István Berkes", "László Györfi", "Péter Kevei" ], "comment": "24 pages, 2 figures", "categories": [ "math.PR" ], "abstract": "We provide exact asymptotics for the tail probabilities $\\mathbb{P} \\{S_{n,r} > x\\}$ as $x \\to \\infty$, for fix $n$, where $S_{n,r}$ is the $r$-trimmed partial sum of i.i.d. St. Petersburg random variables. In particular, we prove that although the St. Petersburg distribution is only O-subexponential, the subexponential property almost holds. We also determine the exact tail behavior of the $r$-trimmed limits.", "revisions": [ { "version": "v1", "updated": "2015-07-10T11:00:18.000Z" } ], "analyses": { "subjects": [ "60F05", "60E07" ], "keywords": [ "tail probabilities", "petersburg sums", "trimmed sums", "exact tail behavior", "petersburg random variables" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }