{ "id": "1507.02123", "version": "v1", "published": "2015-07-08T12:27:26.000Z", "updated": "2015-07-08T12:27:26.000Z", "title": "Strong coupling asymptotics for Schrödinger operators with an interaction supported by an open arc in three dimensions", "authors": [ "Pavel Exner", "Sylwia Kondej" ], "comment": "17 pages, no figures", "categories": [ "math-ph", "math.MP", "math.SP", "quant-ph" ], "abstract": "We consider Schr\\\"odinger operators with a strongly attractive singular interaction supported by a finite curve $\\Gamma$ of lenghth $L$ in $\\R^3$. We show that if $\\Gamma$ is $C^4$-smooth and has regular endpoints, the $j$-th eigenvalue of such an operator has the asymptotic expansion $\\lambda_j (H_{\\alpha,\\Gamma})= \\xi_\\alpha +\\lambda _j(S)+\\mathcal{O}(\\mathrm{e}^{\\pi \\alpha })$ as the coupling parameter $\\alpha\\to\\infty$, where $\\xi_\\alpha = -4\\,\\mathrm{e}^{2(-2\\pi\\alpha +\\psi(1))}$ and $\\lambda _j(S)$ is the $j$-th eigenvalue of the Schr\\\"odinger operator $S=-\\frac{\\D^2}{\\D s^2 }- \\frac14 \\gamma^2(s)$ on $L^2(0,L)$ with Dirichlet condition at the interval endpoints in which $\\gamma$ is the curvature of $\\Gamma$.", "revisions": [ { "version": "v1", "updated": "2015-07-08T12:27:26.000Z" } ], "analyses": { "subjects": [ "81Q10", "35J10", "35P20" ], "keywords": [ "strong coupling asymptotics", "schrödinger operators", "open arc", "th eigenvalue", "dimensions" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150702123E" } } }