{ "id": "1507.01875", "version": "v1", "published": "2015-07-07T17:00:39.000Z", "updated": "2015-07-07T17:00:39.000Z", "title": "The $(2,p)$-generation of sporadic simple groups", "authors": [ "David A. Craven" ], "categories": [ "math.GR" ], "abstract": "In this short note we prove that, if $p$ is an odd prime dividing the order of a sporadic simple group, then with the exception of four groups for $p=3$, all sporadic simple groups are generated by an involution and an element of order $p$.", "revisions": [ { "version": "v1", "updated": "2015-07-07T17:00:39.000Z" } ], "analyses": { "keywords": [ "sporadic simple group", "generation", "short note", "involution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150701875C" } } }