{ "id": "1507.01622", "version": "v1", "published": "2015-07-06T20:57:23.000Z", "updated": "2015-07-06T20:57:23.000Z", "title": "Zeros of polynomials orthogonal with respect to a signed weight", "authors": [ "M. Benabdallah", "M. J. Atia", "R. S. Costas-Santos" ], "comment": "12 pages, 1 figure", "journal": "Indag. Math. (N.S.) 23 (2012), no. 1-2, 26-31", "doi": "10.1016/j.cam.2008.07.055", "categories": [ "math.CA" ], "abstract": "In this paper we consider the polynomial sequence $(P_{n}^{\\alpha,q}(x))$ that is orthogonal on $[-1,1]$ with respect to the weight function $x^{2q+1}(1-x^{2})^{\\alpha}(1-x), \\alpha>-1, q\\in \\mathbb N$; we obtain the coefficients of the tree-term recurrence relation (TTRR) by using a different method from the one derived in \\cite{kn:atia1}; we prove that the interlacing property does not hold properly for $(P_n^{\\alpha,q}(x))$; and we also prove that, if $x_{n,n}^{\\alpha+i,q+j}$ is the largest zero of $P_{n}^{\\alpha+i,q+j}(x)$, $\\displaystyle x_{2n-2j,2n-2j}^{\\alpha+j,q+j}< x_{2n-2i,2n-2i}^{\\alpha+i,q+i}, 0\\leq i