{ "id": "1507.01329", "version": "v1", "published": "2015-07-06T05:34:31.000Z", "updated": "2015-07-06T05:34:31.000Z", "title": "Invariants of the orthosymplectic Lie superalgebra and super Pfaffians", "authors": [ "G. I. Lehrer", "R. B. Zhang" ], "categories": [ "math.RT" ], "abstract": "Given a complex orthosymplectic superspace $V$, the orthosymplectic Lie superalgebra $\\mathfrak {osp}(V)$ and general linear algebra ${\\mathfrak {gl}}_N$ both act naturally on the coordinate super-ring $\\mathcal{S}(N)$ of the dual space of $V\\otimes{\\mathbb C}^N$, and their actions commute. Hence the subalgebra $\\mathcal{S}(N)^{\\mathfrak {osp}(V)}$ of $\\mathfrak {osp}(V)$-invariants in $\\mathcal{S}(N)$ has a ${\\mathfrak {gl}}_N$-module structure. We introduce the space of super Pfaffians as a simple ${\\mathfrak {gl}}_N$-submodule of $\\mathcal{S}(N)^{\\mathfrak {osp}(V)}$, give an explicit formula for its highest weight vector, and show that the super Pfaffians and the elementary (or `Brauer') ${\\rm OSp}$-invariants together generate $\\mathcal{S}(N)^{\\mathfrak {osp}(V)}$ as an algebra. The decomposition of $\\mathcal{S}(N)^{\\mathfrak {osp}(V)}$ as a direct sum of simple ${\\mathfrak {gl}}_N$-submodules is obtained and shown to be multiplicity free. Using Howe's $({\\mathfrak {gl}}(V), {\\mathfrak {gl}}_N)$-duality on $\\mathcal{S}(N)$, we deduce from the decomposition that the subspace of $\\mathfrak{osp}(V)$-invariants in any simple ${\\mathfrak {gl}}(V)$-tensor module is either $0$ or $1$-dimensional. These results also enable us to determine the $\\mathfrak {osp}(V)$-invariants in the tensor powers $V^{\\otimes r}$ for all $r$.", "revisions": [ { "version": "v1", "updated": "2015-07-06T05:34:31.000Z" } ], "analyses": { "subjects": [ "16W22", "15A72", "17B20" ], "keywords": [ "orthosymplectic lie superalgebra", "super pfaffians", "invariants", "complex orthosymplectic superspace", "general linear algebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150701329L" } } }