{ "id": "1507.00829", "version": "v1", "published": "2015-07-03T06:58:13.000Z", "updated": "2015-07-03T06:58:13.000Z", "title": "Anti-concentration for random polynomials", "authors": [ "Oanh Nguyen", "Van Vu" ], "comment": "8 pages", "categories": [ "math.PR", "cs.CC" ], "abstract": "We prove anti-concentration results for polynomials of independent Rademacher random variables, with arbitrary degree. Our results extend the classical Littlewood-Offord result for linear polynomials, and improve several earlier estimates. As an application, we address a challenge in complexity theory posed by Razborov and Viola.", "revisions": [ { "version": "v1", "updated": "2015-07-03T06:58:13.000Z" } ], "analyses": { "keywords": [ "random polynomials", "independent rademacher random variables", "complexity theory", "arbitrary degree", "results extend" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150700829M" } } }