{ "id": "1507.00218", "version": "v1", "published": "2015-07-01T13:11:08.000Z", "updated": "2015-07-01T13:11:08.000Z", "title": "Remarks on the intersection of SLE$_κ(ρ)$ curve with the real line", "authors": [ "Menglu Wang", "Hao Wu" ], "comment": "All comment are welcome", "categories": [ "math.PR" ], "abstract": "SLE$_{\\kappa}(\\rho)$ is a variant of SLE$_{\\kappa}$ where $\\rho$ characterizes the repulsion (if $\\rho>0$) or attraction $(\\rho<0)$ from the boundary. This paper examines the probabilities of SLE$_{\\kappa}(\\rho)$ to get close to the boundary. We show how close the chordal SLE$_{\\kappa}(\\rho)$ curves get to the boundary asymptotically, and provide an estimate for the probability that the SLE$_{\\kappa}(\\rho)$ curve hits graph of functions. These generalize the similar result derived by Schramm and Zhou for standard SLE$_{\\kappa}$ curves.", "revisions": [ { "version": "v1", "updated": "2015-07-01T13:11:08.000Z" } ], "analyses": { "subjects": [ "60D05", "28A80" ], "keywords": [ "real line", "intersection", "curve hits graph", "standard sle", "similar result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150700218W" } } }