{ "id": "1506.09105", "version": "v1", "published": "2015-06-30T14:25:19.000Z", "updated": "2015-06-30T14:25:19.000Z", "title": "On Yamabe type problems on Riemannian manifolds with boundary", "authors": [ "Marco Ghimenti", "Anna Maria Micheletti", "Angela Pistoia" ], "categories": [ "math.AP", "math.DG" ], "abstract": "Let $(M,g)$ be a $n-$dimensional compact Riemannian manifold with boundary. We consider the Yamabe type problem \\begin{equation} \\left\\{ \\begin{array}{ll} -\\Delta_{g}u+au=0 & \\text{ on }M \\\\ \\partial_\\nu u+\\frac{n-2}{2}bu= u^{{n\\over n-2}\\pm\\varepsilon} & \\text{ on }\\partial M \\end{array}\\right. \\end{equation} where $a\\in C^1(M),$ $b\\in C^1(\\partial M)$, $\\nu$ is the outward pointing unit normal to $\\partial M $ and $\\varepsilon$ is a small positive parameter. We build solutions which blow-up at a point of the boundary as $\\varepsilon$ goes to zero. The blowing-up behavior is ruled by the function $b-H_g ,$ where $H_g$ is the boundary mean curvature.", "revisions": [ { "version": "v1", "updated": "2015-06-30T14:25:19.000Z" } ], "analyses": { "keywords": [ "yamabe type problem", "dimensional compact riemannian manifold", "boundary mean curvature", "outward pointing unit normal", "small positive parameter" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150609105G" } } }