{ "id": "1506.08881", "version": "v1", "published": "2015-06-29T22:12:33.000Z", "updated": "2015-06-29T22:12:33.000Z", "title": "Sandpiles and unicycles on random planar maps", "authors": [ "Xin Sun", "David B. Wilson" ], "comment": "15 pages. arXiv admin note: text overlap with arXiv:1108.2241 by other authors", "categories": [ "math.PR" ], "abstract": "We consider the abelian sandpile model and the uniform spanning unicycle on random planar maps. We show that the sandpile density converges to 5/2 as the maps get large. For the spanning unicycle, we show that the length and area of the cycle converges to the hitting time and location of a simple random walk in the first quadrant. The calculations use the \"hamburger-cheeseburger\" construction of Fortuin--Kasteleyn random cluster configurations on random planar maps.", "revisions": [ { "version": "v1", "updated": "2015-06-29T22:12:33.000Z" } ], "analyses": { "subjects": [ "82B20", "60C05", "05C05" ], "keywords": [ "random planar maps", "fortuin-kasteleyn random cluster configurations", "simple random walk", "cycle converges", "sandpile density converges" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150608881S" } } }