{ "id": "1506.08345", "version": "v1", "published": "2015-06-28T02:08:56.000Z", "updated": "2015-06-28T02:08:56.000Z", "title": "Color-blind index in graphs of very low degree", "authors": [ "Jennifer Diemunsch", "Nathan Graber", "Lucas Kramer", "Victor Larsen", "Lauren M. Nelsen", "Luke L. Nelsen", "Devon Sigler", "Derrick Stolee", "Charlie Suer" ], "comment": "10 pages, 3 figures, and a 4 page appendix", "categories": [ "math.CO" ], "abstract": "Let $c:E(G)\\to [k]$ be an edge-coloring of a graph $G$, not necessarily proper. For each vertex $v$, let $\\bar{c}(v)=(a_1,\\ldots,a_k)$, where $a_i$ is the number of edges incident to $v$ with color $i$. Reorder $\\bar{c}(v)$ for every $v$ in $G$ in nonincreasing order to obtain $c^*(v)$, the color-blind partition of $v$. When $c^*$ induces a proper vertex coloring, that is, $c^*(u)\\neq c^*(v)$ for every edge $uv$ in $G$, we say that $c$ is color-blind distinguishing. The minimum $k$ for which there exists a color-blind distinguishing edge coloring $c:E(G)\\to [k]$ is the color-blind index of $G$, denoted $\\operatorname{dal}(G)$. We demonstrate that determining the color-blind index is more subtle than previously thought. In particular, determining if $\\operatorname{dal}(G) \\leq 2$ is NP-complete. We also connect the color-blind index of a regular bipartite graph to 2-colorable regular hypergraphs and characterize when $\\operatorname{dal}(G)$ is finite for a class of 3-regular graphs.", "revisions": [ { "version": "v1", "updated": "2015-06-28T02:08:56.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "color-blind index", "low degree", "regular bipartite graph", "proper vertex", "edges incident" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }