{ "id": "1506.08071", "version": "v1", "published": "2015-06-26T13:38:34.000Z", "updated": "2015-06-26T13:38:34.000Z", "title": "Weil representation of a generalized linear group over a ring of truncated polynomials (over a finite field", "authors": [ "Luis Gutiérrez Frez", "José Pantoja" ], "categories": [ "math.RT" ], "abstract": "We construct a complex linear Weil representation $\\rho$ of the generalized special linear group $G=SL_*^{1}(2,A_n)$, ($A_n=K[x]/\\langle x^n\\rangle $, $K$ the quadratic extension of the finite field $k$ of $q$ elements, $q$ odd), where $A_n$ is endowed with a second class involution. After the construction of a specific data, the representation is defined on the generators of a Bruhat presentation of $G$, via linear operators satisfying the relations of the presentation. The structure of a unitary group $U$ associated to $G$ is described. Using this group we obtain a first decomposition of $\\rho$.", "revisions": [ { "version": "v1", "updated": "2015-06-26T13:38:34.000Z" } ], "analyses": { "subjects": [ "20C33", "20C15", "20F05" ], "keywords": [ "generalized linear group", "finite field", "truncated polynomials", "complex linear weil representation", "generalized special linear group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }