{ "id": "1506.07949", "version": "v1", "published": "2015-06-26T03:22:23.000Z", "updated": "2015-06-26T03:22:23.000Z", "title": "A sufficient condition for a balanced bipartite digraph to be hamiltonian", "authors": [ "Ruixia Wang" ], "comment": "13 pages, 2 figures", "categories": [ "math.CO" ], "abstract": "We describe a new type of sufficient condition for a balanced bipartite digraph to be hamiltonian. Let $D$ be a balanced bipartite digraph and $x,y$ be distinct vertices in $D$. $\\{x, y\\}$ dominates a vertex $z$ if $x\\rightarrow z$ and $y\\rightarrow z$; in this case, we call the pair $\\{x, y\\}$ dominating. In this paper, we prove that a strong balanced bipartite digraph $D$ on $2a$ vertices contains a hamiltonian cycle if, for every dominating pair of vertices $\\{x, y\\}$, either $d(x)\\ge 2a-1$ and $d(y)\\ge a+1$ or $d(x)\\ge a+1$ and $d(y)\\ge 2a-1$. The lower bound in the result is sharp.", "revisions": [ { "version": "v1", "updated": "2015-06-26T03:22:23.000Z" } ], "analyses": { "keywords": [ "sufficient condition", "strong balanced bipartite digraph", "distinct vertices", "vertices contains", "lower bound" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150607949W" } } }