{ "id": "1506.07807", "version": "v1", "published": "2015-06-25T16:15:19.000Z", "updated": "2015-06-25T16:15:19.000Z", "title": "Interplay between Orbital Magnetic Moment and Crystal Field Symmetry: Fe atoms on MgO", "authors": [ "S. Baumann", "F. Donati", "S. Stepanow", "S. Rusponi", "W. Paul", "S. Gangopadhyay", "I. G. Rau", "G. E. Pacchioni", "L. Gragnaniello", "M. Pivetta", "J. Dreiser", "C. Piamonteze", "C. P. Lutz", "R. M. Macfarlane", "B. A. Jones", "P. Gambardella", "A. J. Heinrich", "H. Brune" ], "comment": "6 pages, 4 figures", "categories": [ "cond-mat.mes-hall" ], "abstract": "We combine density functional theory, x-ray magnetic circular dichroism, multiplet calculations, and scanning tunneling spectroscopy to assess the magnetic properties of Fe atoms adsorbed on a thin layer of MgO(100) on Ag(100). Despite the strong axial field due to the O ligand, the weak cubic field induced by the four-fold coordination to Mg atoms entirely quenches the first order orbital moment. This is in marked contrast to Co, which has an out-of-plane orbital moment of $L_z = \\pm 3$ that is protected from mixing in a cubic ligand field. The spin-orbit interaction restores a large fraction of the Fe orbital moment leading a zero-field splitting of $14.0 \\pm 0.3$~meV, the largest value reported for surface adsorbed Fe atoms.", "revisions": [ { "version": "v1", "updated": "2015-06-25T16:15:19.000Z" } ], "analyses": { "keywords": [ "crystal field symmetry", "orbital magnetic moment", "fe atoms", "x-ray magnetic circular dichroism", "first order orbital moment" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }