{ "id": "1506.07678", "version": "v1", "published": "2015-06-25T09:43:37.000Z", "updated": "2015-06-25T09:43:37.000Z", "title": "Asymptotic of Number of Similarity Classes of Commuting Tuples", "authors": [ "Uday Bhaskar Sharma" ], "comment": "13 Pages, 1 Table", "categories": [ "math.CO" ], "abstract": "We have for positive integers $n$, $k$ and finite field $\\mathbb{F}_q$, $c(n,k,q)$, as the number of simultaneous similarity classes of $k$-tuples of commuting $n\\times n$ matrices over the $\\mathbb{F}_q$. In this paper, it has been shown that $c(n,k,q)$ as a function of $k$ for fixed $n$ and $q$ is asymptotically $q^{m(n)k}$, where $m(n) = \\left[\\frac{n^2}{4}\\right] + 1$, which is the dimension of the maximal commutative subalgebra of $M_n(\\mathbb{F}_q)$ (the algebra of $n\\times n$ matrices over $\\mathbb{F}_q$).", "revisions": [ { "version": "v1", "updated": "2015-06-25T09:43:37.000Z" } ], "analyses": { "subjects": [ "05A16" ], "keywords": [ "commuting tuples", "asymptotic", "finite field", "simultaneous similarity classes", "maximal commutative subalgebra" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150607678B" } } }